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Poincaré's small-parameter method and the Krylov-Bogoliubov asymptotic method
are among the number of basic methods used for the study of nonlinear oscil-
lations. Poincaré's method was developed in conformity with statlonary
(periodic) oscillations [1], although it may be extended to nonstationary
oscillaticns as well (see, for example, [2]). The Krylov-Bogoliubov method
may be used, first of all, for a study of nonstetionary oscillations, but it
i1s, of course, completely applicable to perlodic osclllations as well [3].

It is sometimes asserted that these methods are different in principle.
Thus, for example, Polncaré‘'s method requires the convergence of series in
a small parameter which represent perlodic solutions. On the other hand, in
the description of the Krylov-Bogoliubov method it is emphasized that the
question of the convergence of small-parameter expansions does not arlse at
all and that in some cases these serles are known to be divergent. It is
pointed out that the expansions used serve only for the construction of
asymptotic approximations of any desired degree of accuracy under the con-
dition that the small parameter approaches zero.,

In the present paper we conslder the periodic¢c solutions of quasilinear
systems with one degree of freedom, and the calculations are shown only for
self-contained systems, A comparison is made between the first few terms of
expansions obtained by the two methods.

l, We consider the self-contained oscillatory system
z" 4+ oz = pf(z, z) ( Y =dldt (1.1)
Let the function f(x,x°) be a polynomial or an analytic function of two
arguments in some domain of their varlation, and let | be a small parameter,

According to the Krylov-Bogoliubov method, we attempt to find a solution
in the form of an expansion in the small parameter (the notations vary some-

what}: T = acosy - pur (e, Y)+ plue(a, b)+... (1.2)
in which the quantities ¢ and ¢ satisfy Equations
a’ = pd(a)+ p2da(a)+..., V' = o + uBi(a)+ p2Bs(a)+... (1.3)
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The functions u,(a,y) are perlodic functions of , with period on ,
which do not contain the first harmonics in § . No initial conditions are
introduced.

For periodic oscillations we have

a=0, P’ == const
Consequently, if we assume that y = O when ¢ = O, then
¥ = t[o + pBi(e)+ piBa(a)+...] 1.4
We write 4 , the amplitude of the first harmonic, 1n the form of an
expansion @ = agt ap + apit... (1.5)
Then the solutilon of Equation {1.1) may be represented in the form
z($)= zo(P)+ pai($)+ p2z($)+... (1.6)

where the coefficients of this expansion will be perlodic functions of
with period 2n . For the first three coefficlients, we obtain Expressioasn

da

It should be noted that in [(1] the nth approximation means the sum of the
first n terms of the series (1.6}, For example, as the third approximation

we have

2O P)=zo(}) +pz(P)+ prz($)=(a0+ mp + ap2)cosp + pur(aot ap, $) + p2us (20, )

where y§ 1s taken with the required accuracy 1in each term.

Zo($)= aocos P, zi(P)= acosPp + ui(ae,$), z2(P)= azcosy - al( 9y )a* + us(ae, ¥)

The quantities 4, {(a) and p5,(a) are defined by Formulas 1.8)
t & : ¥
4.0 =~ 5o\ ha@wsinvan B, @) = — 557 | fuy 09 cospay
0 0

The functions g,(a,y) for n = 0, 1, 2 are of the following form:
fo (@, %) = flec cosp, —wa siny)

a R
h@9) = wf,’ + (A1 cosp — a By sin +a)—5'%) 1+ (wl2 — 457) cosp +
B\ . o »
+ 4, (ZB, + a ‘d—(:-) siny — 204, Ea_;_:p — 20B, 57’;—;-

. a
fa (0, 9) = g w1? fr” + (g o5 — aBysing + 0 F) fu” +

duy

2
+ 5 (s cos® — aBy sin g+ 0 Gk ) fup"Fuaty’ +

X 2 0 0 ‘
+(A,cos1p——aB2s1n1|J+Ax§?+ B, diqt +“"5%) L' +
d. dA
+ (2aBlB2 —AI{%"Aﬂﬁ) cosy +

dB, dBy\ .
+ (ZAIB, + 24:B, + aAlﬁ- + aArd—a’) sin ¢ +

The omitted terms in the last formula contain the partial derivatlves of
the functions vy, (a.t) and ug (a,') , with coefficients which depend only
on a .

In the preceding formulas 8ll the derivatives of the function g(x,x’ )
are calculgted t‘g',s z = a cosP, £ = —wasiny. Moreover, in these formulas,

as in the subsequent discussion, the quantity 4 1is taken to mean the value
of this quantity when y = O, that is, & =a, .
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The functions wu,(a,y) are solutions of the differential equation
Pu, ]
o + u, = 28 [fna(a, ¥)+20 A4, sinp+20a B, cos ] 1.9
Let us now consider the construction of periodic solutions of equation
(1.1) by Poincaré's method., For self-contained systems the solutions are

usually constructed with the initial consition x (0) = O ., The coeffilcients
of the serles (1.6) are obtained in the following form [4]:

20 () = Ag* cos, 2, (D) = A,* cOsY + C () — MyAg® ¥ sin

ac
z, (§) = A,* cosy + Cy () + 4,* a,;::p) + VG () —
— (hgAg* + hA4,*) P sing— % hi2A4* $2 cos (1.10)
The functions ¢,(y) are defined by Formula
1 g
Ca ) = 5 | B0 sin (6 — woaty (1.44)

0
where, for n =1, 2, 3, we have

Hy () = f(Ag* cos §, —w Ay® siny)
Hy () = 1,/C, ) +01.C" ()
Hy () = Y3 £ C3 (§) + 0 fo:"Cy () Cy () + Ye00? f” CY3 (H) +

+ 1/ C () +of Cy ()

It should be noted that in constructing the series (1.6) by Poincaré's
method, we use a transformation of the independent variable

ot=v%0+hp+hpr+...) (1.12)
The coefficlients h,, h, and n, have the following values:
1 1 oN,
by = EJ—tNl' hy= P (Al' A + N,) (1.13)
i aN 1 N oN
hs = 52 ( * g T T A Gt A g+ Na)

In these formulas the following notation is used:

1 , 1 ' (o '1—NH 271)
Ny= 7€ @), Np=—5|C/ @) + GNMH @

Ny = —A;‘.—,{c,' @ + mi,zv.Hl (@n) — N, [Cz @n) +

1 1 i
+ gaw O @) — g Hy @) Gy (2m) — oz Byt ||

From Formula (1.12) we ocbtain
V=0t [{ — hp + (h? — hpt — (A — 2hyhy + B > 4 . . ] (1.14)

2. Comparing the coefficients for equal powers of u in the right-hand
parts of Formulas (1.4) and (1.14), we find

—el =B, o~ k) = 6 Bt 4 By(0) @)

dB 1 _dB dB; |
— @ (b = 2hihy + hy) = a,d—a‘ +§a3#+ al-d—a'—rB,(a)

In order c¢o determine the relationship between the functions ({ (¢) and
u, (a,y), we integrate Equation (1.9) for » = 1. Taking Formula }.11) into
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account, we obtain

Colh)-= 11 0, %) — (2, 0) cosp — (L) siny —
1
— 5 A1(@ (sinp —ycosy) — — By @ psiny (2.2)
If we set ¢ = 2r 1in this equation, then
C,(2n) = (2n/ w) A, (a) (2.3)

Next, we differentiate Equation (2.2) with respect to ¢ and set ¢ = 2n
in thils equation. Then

Cy 2n) = (—2mna/ ®) By (a) (2.4)
Formulas (2.3) and (2.4) can be obtained directly from (1.8).
In Poincaré's method the coefficient 4. 1s found from Equation

¢, (2m) =0

Correspondingly, in the Krylov-Bogoliubov method the coefficient ao 1is
determined from Equation
Ay (ag) = 0

On the basis of Equation (2.3), we then have
Ao* = a4 (25)
Consequently, the first approximation of xo(w) 1s the same 1in the two

methods. Taking Formulas (1.13) and (2.4%) into account, we readily see that
the first equation of (2.1) becomes an identity.

Hereafter we shall assume that Ao*, and consequently g, as well, will
be simple roots of the equations from which they are determilned.

Calculating functlions 4,(@) and p,(q) by Formulas (1.8), after some
transformations we obtain

o oC 1
4 () = 5 [02 @n) + Eﬁo—i‘ u (@, 0) 4 gz €0 (2:1)]

o ac,’ 1
Balo) = — 57 {05 @)+ g (@, 0) — 5o O Q) —

1 1
— 27 [ @ 0 — 5 fola, 0 |0y ) 2.6

In order to determine the coefficient Al*in Poincaré's method, we have
Equation

aC 1
A G T+ Ca @)+ o €2 (2m) = 0

The analogous equation for @, in the Krylov-Bogoliubov method will be

dA
a4 b+ 4y () =0

Taking the expressions for 4,(a) and 4,(a) into account, we find the
relationship betwee 4,* and g,

Al* = a, - Uy (ao, ) (27)

We compare the coefficlents of u 1n the expansion (1.6) which are ob-
tained by the two methods. For this purpose, in the second formula of (1.10)
we substltute the expressions for Ax* ) Cx(W): and pn, from the appropriate
formulas. We dbtaln

21 (h) = a3 €059 + uy (a, §) — (%)“'z"

On t?e)other hand, by the Krylov-Bogoliubov methoed we have Formula (1.7)
for x,(¥) .

sin
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However, a comparison of the periodic solutions must be carried out for
identical initial conditions., Let us assume that the periodic solution
according to the Krylov-Bogoliubov method is also constructed with the ini-
tial condition x°*(0) = O , Then

( aul ) -0
3 Jo=0 (2.8)
Here the function x, (y) determined be the two methods will be identical.

1t is easy to verify that the second equation of (2.1) becomes an ldentity
if we replace all the guantitles appearing in it by the known expressions
for them,

Next,we integrate Equation (1.9) for n = 2 . Taking Formula (1.11) into
account, we find

Cuthh =t e )y e, O on (S),  sine —

8Cy { 8
— B 0+ B @ T — s B o) WP oosy +

1
-+ o Aa {a) (pcosyp — sin \p) —_ —:;— B, (a)psinyg (2.9)

Let us now calculate the coefficlents 4,(a) end B;(@) . After some com-
plicated transformations we obtain

aC i 8¢ ac.
A(0) = 12 [C22m) + 3ok 1 (0, 0) + 5 gt v e O) + Ak e, O] +

1 n | dA; du, {a, 0) 25a 2:m
+ 5 Bids — 5 As gy ~—Az“~}-a—a——+ — BBy — 3
T
+ 2 B[ w (e, 00— g5 fole, 0)]
acy’ aCy’ ac,
Ba(a);‘-“?na [Ca (23)’!”‘6144“1(“10)%‘2 94,2 w? (a, 0) + aAt"z(a’O}]

1 1
— 4 Byfwate, 0 — e 0]++ * (5 Be— B) [u, (0,0 — g5 o @ 0] +
i I Uy L] dAl i dB1 2“ _2‘ R
+ A (636\{))@::0 twotrd T oA T oap Bt g BB
2 7‘2 2 32u1 b9 afg‘) .
+ o8 (5 1)+ 58 (G5 )ume T o 2 (om0
The coefflcient 4, * 4n Poincaré's method is determined from Equation

ac 1 ocy 1
Ag* aAt + 5 Al EY R tz+A1 [6Aot‘ +A‘6A}" 2% (2“)“2_,%3?012(2“)]+

1 Yy
+ €3 2n) + ;;OT C 2m) &y (@r) + Totd e H,2n)C,* 2n) =0
The equation for the coefficlent g, in the Krylov-Bogoliubov method will

be
dA &4 dA,
g T ratgE Fag Fdla) =0

Comparing the left-hand sides of these equations, we find

Buy (2, 0
=yt a 1‘—‘—;‘29—’ +ug (g, 0) @2.11)

In the third formula of (1.10) we replace all the quantities by the equi-
valent expressions, After some transformations we obtain
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d
210 = aycont + 0y 5+ ua(o,¥) — [0 Juay + o], cin®

The function x,(¥) 1in the Krylov-Bogoliubov method is determined from
Formula (1.7j.

If we consider the inltial condition for this functlon, we find that

Pu dug
[ 3255 + Sl =0 242

Consequently, the values of the function x,(y) that are determined by
the two methods are exactly the same.

It is easy to verify that the third equation of (2.1), like the previous
equations, becomes an identity.

Thus, all three approximations obtained by one method completely coinecide
with those obtained by the other., Obviously, any other approximations
obtained by the two methods will also coincide.

For quasillnear non-self-contalned systems a comparison between the two
approximations has alsc been made in the case of principal resonance, The
agreement was found to be complete, just as in the case of self-contained
systems,

A similar comparison for systems with several degrees of freedom will
obviously lead to analogous results. In particular, in Poincaré's method
for single-frequency oscillations of quasilinear self-contained systems des-
cribed by second-order equations, the problem of constructing perilodic solu-
tions may be reduced to a problem with one degree of freedom, with the addi-
tional calculation of a number of supplementary functions (5]. By the Kryow
Bogoliubov method, this problem is solved in a somewhat different manner [3].
The first approximations obtalned by the two methods will coinclde.” A com-
parison of the second approximations has not been made, owing to the diffi-
culty of the calculations. However, there is no need for this, since such
a comparison might rather serve for verifylng the correctness of applying
one or the other method to the indicated problem but not for a comparison of
the methods themselves.

The general concluslon to be drawn from the foregoing is this: Poincaré's
small-parameter method and the ‘Krylov-Bogoliubov asymptotic method are, in
a certain sense, equivalent methods when applled to the problem of construc-
ting the periodic oscillatlions of guassilinear systems. Thls means that two
corresponding approximations calculated by the two methods will be identical,
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