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Polncarb*s small-parameter method and the Krylov-Bogollubov asymptotic method 
are among the number of basic methods used for the study of nonlinear oscll- 
latlons. 
(periodic) 

P0ticar6~s method was developed In conformity with stationary 
oscillations [l], although It ma 

osclllatlons as well (see, for example, [2] T. 
be extended to nonstationary 

The Krylov-Bogollubov method 
may be used, first of all, for a study of nonstationary oscillations, but it 
Is, of course, completely applicable to periodic oscillations as well [3]. 

It Is sometimes asserted that these methods are different In principle. 
Thus, for example, PoincarB’s method requires the convergence of series ln 
a small parameter which represent periodic solutions. On the other hand, in 
the description of the Krylov-Bogollubov method It Is emphasized that the 
question of the convergence of small-parameter expansions does not arise at 
all and that In some cases these series are known to be divergent. It Is 
pointed out that the expansions used serve only for the construction of 
asymptotic approximations of any desired degree of accuracy under the con- 
dition that the small parameter approaches zero. 

In the present paper we consider the period19 solutions of quaslllnear 
systems with one degree of freedom, and the calculations are shown only for 
self-contained systems. A comparison Is made between the first few terms of 
expansions obtained by the two methods. 

1. We consider the self-contained oscillatory system 

5” + 0% = pLf(z, 5’) ( )’ = a/at (I.11 
Let the function y(x,x’) be a pOl~fxnlal or an analytic function of two 

arguments In some domain of their variation, and let u be a small parameter. 

According to the Krylov-Bonollubov method, we attempt to find a solution 
In the form-of an expakon G the 
what) : 

Z = acosl$ + pu1 

In which the quantities a and $ 

a’ = p&(a)+ p*.&(a)+..., 

sma11 Parameter (td notations vary some- 

(a, cl)+ p2uz(a, *,)+... (1.2) 

satlafy Equations 

q = 0 + y&(a)+ p2Ba(a)+... (1.3) 
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The functions u~(o,*) are periodic functions of 
P 

with period 2n 
which do not contain the first harmonics In ti . No nltlal conditions aie 
Introduced. 

For periodic oscillations we have 

c' = 0, jj = collst 

Consequently, if we assume that # = 0 when t = 0 , then 

lp = t1C.c + p&(a)+ p3%(c)+...l (1.4) 

We write c , the amplitude of the first harmonic, In the form of an 
expansion 

c = ao+ a+ + aall%+... (1.5) 

Then the solution of Equation (1.1) may be represented In the form 

s(lv)= so($)+ Irs(rp)+ IL%($)+.** (1.6) 

where the coefficients of this expansion will be periodic functions of v 
with period 2n . For the first three coefficients, we obtain Expressions 

(1.7) 
zo($)= cocos *,I ZI($)= ciUM$ -I- w(40, (p), m($)= a2cos$ + al -$ 

( 1 
+ w(ao* 9) 

(L=(l. 
It should be noted that In 

first n terms of the series 't 
l] the nth approximation means the sum of the 
1.6). For example, as the third approximation 

we have 

s's'(+so(N +H(ll)+ P*z2(+(ao+ W + arp*)W* + lJw(ao+ alp, $)+ p2u2 (ao,$) 

where $ Is taken with the required accuracy In each term. 

The quantities A,(o) and 8. (~3) are defined by Formulas 

A, (4 = - & 
ax 

s &,_1 (a, $1 sin 9 d$, 
0 

0.8) 
i 

an 

4 (4 = - Pnoo s f,,+ (a, 49 ~0s 9 d$ 

The functions ya(a,*) for n = 0, 1, 2 are of 

je(a,*) = f(c cosrp, --oa sincp) 

I1 (a,$) = UJ,' + (AI cosg -a Bl sin$+o$$) f,‘-i- 
__ 

0 

the following form: 

dA1’ 
aBi2 - A,= 

) COSQ + 

i 
h (u,$) = 7 UIZ f, 

+ +(A,cos’# 
au, s 

- aB,sincp+oa$ t,.,.“++j,’ + ) 

+(A,cos$‘- aB,sin$+Al’z+B,‘$ +o!$)&.~+ 

+ (2uB,B, - Al $- - A, %) cos $ + 

_t (2A,B, + ZArB, + aA, 2 + aA* g sin Cp + > 

The omitted terms in the last formula contain the partial derivatives Of 
the functions ul(c,t) and us(s,t) s with coefficients which depend only 
on a . 

In the preceding formulas all the derivatives of the function y(r,r') 
are calculated for z = a COS$, x’= --oa s~nq. Moreover, In these formulas, 
as in the subsequent dlacusslon, the quantity c is taken to mean the value 
of this quantity when W - 0 , that is, a = a0 . 
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The fUICtlOn8 ~,(a,$) are solutions of the differential equation 

bu, i 

Ws 
+ an = 3 If,_,(a,\p)+20 A, sin Q+2oa B, cos Ql (1.9) 

Let US now consider the construction of periodic solutions of equation 
(1.1) by Polncare's method, For self-contained systems the solutions are 
usually constructed with the Initial consltlon x (0) = 0 
of the series (1.6) are obtained In the following form [4]I 

The coefficients 

ro(@ = A,* COS*, z~(*) = A,* cosrp + C,(Q) - hlAo*QsinQ 

G (Q) = A** COSQ + C, (Q) + Al’ r3A+ 

(i.iO) 
The functions C, ($) are defined by Formula 

1 JI 
C, (9) = gp 

s 
W%) sin ($ -%)+I &ii) 

where, for n = 1, 2, 3, we have " 

HI (9) = f (A,+ cos lp, ----o&4@* sin$) 

HI ($9 = &'CI (9) +W$, (9) 

H, (9) = Vn f,'W (9) +of,."C, (9) C,l (9) + '!no' fx.,.' C,"(Q) + 

+ f,’ C, (Q) + 0 1%~’ Ca’ (Q) 

It should be noted that in constructing the series (1.6) by Polhcare's 
method, we use a transformation of the Independent variable 

ot=$((1+h,p+h**+...) (i.i2) 

The coefficients h,, h0 and & have the following values: 

1 
h, = ANN,, h'=&(A,* 3 + N') (1.13) 

h, = & (-4,* jgp- aN1 + &*2 3% + A,* $- + N8) 

In these formulas the following notation Is used: 

N1= -+;W, Nz=-/& bz' (2~) + ;N,H, (.W] 

N, = Cs' (2~) + $NaH&c) -A+&) + 

2&e H; @I) C,’ (2s) - ; JWd]} 

From Formula (1.12) we obtain 

Q=ot[i-h~3r+(h~‘--h3’-(h~--~h,+h3~~+...] (1.14) 

park of Formulas (1.4) end (1.14), we find 
Comparing the coefficients for equal powers of g In the right-hand 

- ohI = B, (a), o (t$ - h,) = al 2 + B, (a) (2.1) 

-o(h? - + a, $$ i- B, (a) 

In order GO determine the relationship between the functions 
u,(o,$), we Integrate Equation (1.9) for n = 1. Taking Formula f\(!!)a%o . 
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account, we obtain 

in 

- ~Al(a)(sin$-$cos$) -_BB,(a)~sict~ (2.2) 

If we set $ = ti In this equation, then 

c, (2n) = (an I w) A, (a) (2.3) 

Next, we differentiate Equation (2.2) with respect to $ and set 
this equation. Then 

$=rn 

C,' (21x) = (-2na / CO) B, (II) (3.4) 

Formulas (2.3) and (2.4) can be obtained directly from (1.8). 

In Polncare's method the coefficient Ao* Is found from Equation 

C,(2n)=O 

Correspondingly, In the Krylov-Bogoliubov method the coefficient c, is 
determined from Equation 

-4, (ac) =:- i) 

Cn the basis of Equation (2.3), we then have 

A,* ;= a, (2.5) 

Consequently, 
methods. 

the first approximation of x0 (a) Is the same in the two 
Taking Formulas (1.13) and (2.4) Into account, we readily see that 

the first equation of (2.1) becomes an Identity. 

Hereafter we shall assume that do*, and consequently a as well, will 
be simple roots of the equations from which they are determined. 

Calculating functions ~,(a) and P,(c) by Formulas (1.8), after some 
transformations we obtain 

In order to determine the coefficient A,*ln Polncare's 
Equation 

.41* $5 fCa(2n) + & C,'"(2n) = 0 
0 

(2.6) 

method, we have 

The analogous equation for a, in the Krylov-Bogoliubov method will be 

a1 J$$ + -1, (a) = 0 

Taking the expressions for A, (a) and ,4,(c) into account, we find the 
relationship betwee AI* and a, 

A,* = a1 -j- ul (ao. 0) (2.7) 

We compare the coefficients of u in the expansion (1.6) which are ob- 
tained by the two methods. For thls purpose, In the second formula of (1.10) 
we substitute the expressions for AI*, C, ($), and h, from the appropriate 
formulas. 

We bbtaE(+) = al cosl) + u1 (a, $) - (-$-)+=, sin $ 

On the other hand, by the Ksylov-Bogoliubov method we have Formula (1.7) 
for x,(*) . 
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ffowever, a comparison of the periodic solutions must be carried out for 
identical Mtial oonditions. Let us assume that the periodic solution 
according to the Krylov-Bogoliubov method is also constructed with the ini- 
tial condition x’(O) = 0 , Then 

au1 
( ) ag JI=o = 0 (2.8) 

Here the function x,(t) determined be the two methods will be identical. 

It is easy to verify that the second equation of (2.1) becomes an i&entity 
if we replace all the quantities appearing in it by the known expressions 
for them. 

Next,we Integrate Equation (1.9) for a = 2 . Taking Formula (1.11) Into 
account, we find 

Let us now calculate the coefficients A3 (a) and Bs (a) . After some com- 
plicated transformations we obtain 

C c,, Gw + g$ 1 @C1 
urwwt-?;aA,*8ul*(a,O) 

Xl i-,o,%wv - I 
- ;f& ua(a, 0) [ - f fl ,..“o,] + .; (; w - R”) [ u1 (n, 0) - & jo (a, O)] + 
+ $ A% (~)~~ + ;;1; A,% - ; As% - &A@, + ;B,& -:- 

+$3r+i)+ &IS (+), + $BIS (+g,, (2.10) 

The coefficient A: in Poincare’s method Is determined from Equation 

AI*~+~A,‘a~~+A,*[~+l~ Aa* aA,,* c,’ (24 - 2A,*a -!- Cl’2 (24 + 
0 1 

t q-i f‘w + A,* --?-c~(2%tc~(2n) + 1 p 2o’LA,z” 4 (24 c;? cw = 0 
The equation for the coefficient aa in the Krylov-Bogollubov method will 

be 

.,~+~.~~+,~~-~.,,,=o 

Comparing the left-hand sides of these equations, we find 

(2.11) 

In the third formula of (1.10) we replace all the quantities by the equl- 
valent expressions. After some transformations we obtain 
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x3 (9) = aa cos$ + al * + ua (a, 9) - [a1 a + $-I+_ sin* 
The function .Y,(+) ln the Krylov-Bogollubov method is determined from 

Formula (1.7). 

If we consider the Initial condition for this function, we find that 

C 
9% au, 

a~~+~44=C 
3 

(2.12) 

the 
Consequently, the value6 of the function x*(s) that are determined by 
two methods are exactly the same. 

It i8 easy to verify that the third equation of (2.1), like the previous 
equations, becomes an Identity. 

Thus, all three approximations obtained by one method completely coincide 
with those obtalned by the other. CbviouSly, any other approximations 
obtained by the two method8 will also coincide. 

For qUaSilinear non-self-contained systems a comparison between the two 
approXzimatlon8 ha8 al80 been made In the case of principal resonance. The 
agreement was found to be complete, jU8t as in the case of self-contained 
8yStelUS. 

A Similar comparison for systems with several degrees of freedom will 
obviously lead to analogous results. In particular, In PoincarB's method 
for single-frequency oscillations of quaslllnear self-contained systems des- 
cribed by second-order equations, the problem of constructing perlodlc solu- 
tlon8 may be reduced to a problem with one degree of freedom, with the addl- 
tlonal calculation of a number of supplementary functions [5]. By the Kr+v- 
Bogollubov method, this problem is Solved In a somewhat different namer [3]. 
The first approximations obtained by the two methods will coincide.' A com- 
parison of the second approx'%natlons has not been made, owing to the dlffl- 
culty of the calculations. However, there Is no need for this, since such 
a comparison might rather serve for verifying the correctness of applying 
one or the other method to the indicated problem but not for a comparison of 
the method8 themselves. 

The general conclusion to be drawn from the foregoing Is Lhls: Polncare's 
small-parameter method and the'Krylov-Bogollubov asymptotic method are, in 
a certain 8en8e, equivalent method8 when applied to the problem of construc- 
ting the periodic oscillations of Quasilinear systems. This mean8 that two 
corresponding approximations calculated by the two methods will be Identical. 
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